On $n$ -dimensional homogeneous spaces of Lie groups of dimension greater than $n(n-1)/2$ .

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spaces and Groups with Conformal Dimension Greater than One

We show that if a complete, doubling metric space is annularly linearly connected then its conformal dimension is greater than one, quantitatively. As a consequence, we answer a question of Bonk and Kleiner: if the boundary of a one-ended hyperbolic group has no local cut points, then its conformal dimension is greater than one.

متن کامل

Spaces with Conformal Dimension Greater than One

We show that if a complete, doubling metric space is annulus linearly connected then its conformal dimension is greater than one, quantitatively. As a consequence, hyperbolic groups whose boundaries have no local cut points have conformal dimension greater than one; this answers a question of Bonk and Kleiner.

متن کامل

Homogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three

We determine, for all three-dimensional non-unimodular Lie groups equipped with a Lorentzian metric, the set of homogeneous geodesics through a point. Together with the results of [C] and [CM2], this leads to the full classification of three-dimensional Lorentzian g.o. spaces and naturally reductive spaces.

متن کامل

Bounded Trajectories in Homogeneous Spaces of Semisimple Lie Groups

This is a report on a joint work with G.A. Margulis. The problem to be discussed is apparently motivated by number theory, more precisely, by problems in Diophantine approximation. Let us start by recalling that the set B of badly approximable real numbers has full Hausdorff dimension at any point, in other words, for any nonempty open subset W of R, dim(W ∩ B) = 1 (cf. [J,S]). On the other han...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1955

ISSN: 0025-5645

DOI: 10.2969/jmsj/00740371